Critical Scientific Issues
In
Assessing Health Risk
From
Oral Exposure To Inorganic Arsenic
National Research Council Update

James S. MacDonald, Ph.D.
Chrysalis Pharma Partners, LLC
INORGANIC ARSENIC HEALTH RISK ASSESSMENT

Focus of Discussion

- Historical perspective of EPA activities
- NAS/NRC Committee process
- Critical issues identified for IRIS assessment
 - Potential health outcomes
 - Metabolism/disposition/exposure issues
 - Mode-of-action analyses
 - Dose-response considerations
 - Susceptible populations considerations
- Next steps for health risk assessment
INORGANIC ARSENIC HEALTH RISK ASSESSMENT

DISCLAIMER

- ~ 35 years in pharmaceutical industry did not make me an expert on arsenic toxicity!
 - One of few members on NRC Committee with little arsenic/metal experience
- Views to be expressed are those of JSMacDonald not necessarily those of the NRC Committee
 - Slides shared with Committee officials and comments incorporated – but not an “official” report
- No affiliations with any organizations potentially impacted by outcome of EPA IRIS assessment
NRC Committee

Membership

- JOSEPH H. GRAZIANO (Chair), Columbia University Mailman School of Public Health, New York, NY
- HABIBUL AHSAN, University of Chicago, Chicago, IL
- SANDRA J.S. BAIRD, Massachusetts Department of Environmental Protection, Boston, MA
- AARON BARCHOWSKY, University of Pittsburgh, Pittsburgh, PA
- HUGH A. BARTON, Pfizer, Inc., Groton, CT
- GARY P. CARLSON, Purdue University, West Lafayette, IN
- MARY E. DAVIS, West Virginia University, Morgantown, WV
- YVONNE P. DRAGAN, AstraZeneca Pharmaceuticals, Waltham, MA
NRC Committee - Membership

- REBECCA C. FRY, University of North Carolina, Chapel Hill, NC
- CHRIS GENNINGS, Virginia Commonwealth University, Richmond, VA
- GARY L. GINSBERG, Connecticut Department of Public Health, Hartford, CT
- MARGARET KARAGAS, Dartmouth Geisel School of Medicine, Lebanon, NH
- JAMES S. MACDONALD, Chrysalis Pharma Consulting, LLC, Chester, NJ
- ANA NAVAS-ACIEN, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- MARIE E. VAHTER, Karolinska Institute, Stockholm, Sweden
- ROBERT O. WRIGHT, Mount Sinai School of Medicine, New York, NY
Historical Perspective on EPA efforts to Assess iAs Health Risk

Timetable of events

- 1999: NRC reviews 1988 IRIS assessment
- 2001: NRC updates 1999 report; recommends use of epidemiology data in assessment
 - EPA uses NRC reports to establish 10 μg/L as the maximum permissible level
- 2003: EPA starts reassessment of iAS drinking water standards
- 2005: EPA recommendations submitted to EPA SAB for review
- 2007: EPA SAB released comments on draft report
- 2010: EPA release of draft updated iAs IRIS report
 - Focus on cancer endpoints only
- 2011: EPA SAB releases comments on draft IRIS report
- 2011: US Congress mandated NRC review of draft IRIS report before final version issued
Statement of Task

- ad hoc NRC committee to conduct workshop to review critical scientific aspects of iAs toxicity (cancer and non-cancer) with broad spectrum of stakeholders
 - Workshop held April 4, 2013
- NRC committee will issue interim report detailing how issues can best be addressed in EPA’s IRIS assessment
 - Report issued November 7, 2013
- NRC Committee will review EPA’s revised draft IRIS assessment to assure all issues are appropriately addressed
 - Including addressing recommendations from previous NRC reports on how to conduct risk assessments
 - Particularly focus on NRC 2011 Chapter 7 recommendations on formaldehyde on criteria and justification of chosen methods for assessment, modeling approaches, etc.
NRC Committee:
Steps of the toxicologic assessment of inorganic arsenic

Step 1: Hazard Identification
Step 2: Evidence Evaluation and Systematic Reviews
Step 3: Assessment Of Causality
Step 4: Mode of Action Analysis
Step 5: Susceptible Subpopulations
Step 6: Dose Response Analysis

Final Arsenic Assessment
Hazard Identification:
Health Endpoints to Consider

- **Tier 1:** Evidence of a causal association determined by other agencies and in published systematic reviews
 - Lung, skin, and bladder cancer
 - Ischemic heart disease
 - Skin lesions
Hazard Identification: Health Endpoints to Consider

- **Tier 2: Other priority outcomes**
 - Prostate, and renal cancer
 - Diabetes
 - Non-malignant respiratory disease
 - Pregnancy outcomes (neonatal mortality)
 - Neurodevelopmental toxicity
 - Immune effects
Hazard Identification: Health Endpoints to Consider

- **Tier 3: Other endpoints to consider**
 - Liver, pancreatic cancer
 - Renal disease
 - Hypertension
 - Stroke
 - Pregnancy outcomes (fetal loss, stillbirth, neonatal mortality)
Assessment of Causality

Key Elements

- Categorization of evidence on various health endpoints
 - EPA criteria: 5 categories from clearly causally associated to not associated
- Derived from systematic and comprehensive evaluation of available literature
- Need to characterize judgments according to modified Bradford-Hill criteria
- Identify data gaps and prioritize for subsequent analysis for mode-of-action and dose-response
Mode of Action Analysis

Key Elements

- To be performed for those endpoints determined to have a *causal* or *likely to be causal* relationship to iAs
 - May also be used for endpoints with suggestive evidence to assist in calibrating causality
- Exposure-response relationship essential component of process
 - Likely to be data gaps at low end of dose-response curve
- Comprehensive assessment of global body of data
 - In vitro, in vivo (animal), epidemiologic

Are exposures sufficient to trigger key biological event(s) underlying adverse health outcome?
Dose response analysis

Key Elements

- **Basis of analyses for most health endpoints will be epidemiologic data**
 - Dose-response meta-analyses may be possible for some endpoints
- **Mode of action data should be used to extrapolate below the observed range when epi data are inadequate**
- **Analyses should be performed even in the absence of definitive MoA**
 - For endpoints likely to be causally or likely associated with iAs exposure
- **In the absence of MoA data, alternative statistical approaches may be used**
Important Considerations in iAs toxicity assessment

- Adequacy of data on exposure
 - Parent compound (iAs); appropriate endpoint
 - Metabolites
 - Low exposures
- Concomitant exposures
 - Pb, Se, other metals
 - Cigarette smoke
- Nutritional status of exposed population
 - Folate status particularly important
- Measures of outcome for non-cancer endpoints
 - BP, neurodevelopment, pregnancy outcomes
- Sensitive populations
Complex metabolic profile

\[
\begin{align*}
\text{As}^V & \xrightarrow{\text{GSH}} \text{As}^{III} \\
\text{MMA}^V & \xrightarrow{\text{Trx-(S)2}} \text{MMA}^{III} \\
\text{DMA}^V & \xrightarrow{\text{AS3MT}} \text{SAM} \\
\end{align*}
\]
Complex metabolism complicates the risk assessment process

Some of the metabolic factors affecting As toxicity

- Methylation efficiency
 - females more effective than males
 - pregnancy enhances ability to convert iAs to MMA and DMA
- Methylation to DMA appears to detoxify
 - poor methylators seem to show more adverse events
- As3MT activity
 - dietary influence
 - tissue variability
 - population genotype variability
Susceptibility factors

- **Nutritional status**
 - Synthesis of SAM influenced by nutritional status
 - Folate, choline, betaine, B-vitamins
 - Selenium – antagonist with As

- **Pre-existing disease, cigarette smoking, alcohol consumption**

- **Co-exposures**
 - Other metals: Cd, Pb, Hg, Ni, Cr, Co
 - PAH’s

- **Sex-related differences, life stages**
 - Susceptibility in pre- and perinatal stages
Exposure considerations - a critical component of risk assessment

- Causality at high exposure for many end-points not questionable
- Key issue is effects at low exposures
- Appropriate measure of exposure
 - Food, well water concentration
 - Reliable measures difficult to obtain particularly at low levels
 - Biomarkers
 - Hair, nail levels
 - No good detail on metabolite exposure
 - Urine, blood
 - Best – but very difficult to obtain on population basis
Critical consideration: method of extrapolation from observed data

Figure A, Box 7, NRC report; Hypothetical observed and model-predicted mean RR for CVD mortality
Next Steps

- EPA review of available data in progress
- Draft of IRIS Risk Assessment expected from EPA end 2014/early 2015
- NRC Committee to review and comment on draft before finalization
Critical Scientific Issues
In
Assessing Health Risk
From
Oral Exposure To Inorganic Arsenic
National Research Council
Update

Thank You!

Questions - ??