New technologies to maximise output from nutrition studies

School of Agriculture and Food Science
UCD, Belfield, Dublin 4, Ireland

www.ucd.ie/foodandhealth
Disclosure Slide

CEO- NuGO- The Nutrigenomics Organisation

Secretary- Irish Section Nutrition Society
Outline

- Nutrigenomics
- Metabolomics - Food Intake/ Mechanistic
- Individual responses
- TakeAways
Areas where nutrigenomics can help

- Study compliance
- Surrogate endpoints
- Mechanisms
- Inter-individual responses
- Personalised Nutrition
1. Biomarkers of food intake

2. Metabolic phenotyping / Precision Nutrition

3. Alterations following interventions

4. Study of diet related diseases
Metabolomics in nutrition

- Food Intake
 - Exogenous metabolome
 - Food Intake Biomarkers
 - Metabolic Phenotype
 - Altered pathways
 - Endogenous metabolome
Background

Food Intake Biomarkers
The need for Dietary Biomarkers

Limitations:

• Measurements over short periods of time may be unrepresentative
• Recall of eating behaviour can be difficult
• Errors in reporting intakes
• Recording process alters dietary habits
• Difficult to validate

Food diaries, FFQ, 24 hr recalls
Approach

- Controlled Interventions
 - Exact intakes

- Response
 - Calibration curves

- Determination of intake
 - Independent studies

metabolomics
Food Intake Biomarkers - Study 1

- Identify biomarkers of legume intake
- Confirmation of biomarkers
Legume biomarker discovery

Foods, sample collection and analysis

TEST FOOD A
Carrots 141g

TEST FOOD B
Peas 138g

N=11

CONTROL FOOD A
Turnips 141g

CONTROL FOOD B
Couscous 138g

Feature extraction and alignment

Feature finding

84161 (-ve) 73734 (+ve)

Mass profiler

1004 (-ve) 819 (+ve)

SIMCA/Metaboanalyst

Statistical analysis

Peas F vs 4h

R²X, 0.41; Q², 0.4
Excretion kinetics

Accurate mass (MS1 scan)

LC-MS/MS

Markers identified

2-Isopropylmalic acid (Level 1)

Asparaginyl valine (level 2)

N-Carbamoyl-2-amino-2-(4-hydroxyphenyl)acetic acid (level 2)
How do we use the biomarkers?
- Measure of adherence to the dietary intervention
- Objective measures of dietary intake
- Relationships with health parameters
Determine biomarker concentration → Determine food intake g/day
Food Intake Biomarkers - Study 2

Fasting & 24 hr samples → Metabolomic analysis → Proline betaine quantification

Estimation of dietary intakes

Proline Betaine (mmol/L) vs. Orange Intake (grams)

Proline Betaine (mmol/L)

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0 50 100 150 200 250 300 350 400 450 500 550 600

Orange Intake (grams)
Comparison to self-reported intake

4 day semi-weighed food diaries

Biomarker Data

Calibration curves

Estimate intake – g/day

Habitual intake – g/day
Calibration curves

NANS

Biomarker calculated citrus intake

Reported citrus intake
Validation; NANS

565 NANS Participants

Reported Citrus Intake

Proline Betaine Quantification

Predicted Citrus Intake (g/day)
Dose response

• Controlled intervention

• 2/3 data – to develop calibration curves

• 1/3 data – comparison of estimated intake with actual intake
Orange juice intake prediction (g)

<table>
<thead>
<tr>
<th>NutriTech ID</th>
<th>Week</th>
<th>Actual Orange juice intake (g)</th>
<th>Orange juice intake predicted (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT018</td>
<td>1</td>
<td>250</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>220</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>NT020</td>
<td>1</td>
<td>250</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>220</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>NT031</td>
<td>1</td>
<td>250</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>220</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50</td>
<td>76</td>
</tr>
</tbody>
</table>
Association between actual & predicted intakes

<table>
<thead>
<tr>
<th>Predicted orange juice intake</th>
<th>Actual orange juice intake (r)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h urine samples (normalized to osmolality)</td>
<td>0.859</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting urine samples (normalized to osmolality)</td>
<td>0.919</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Prediction of citrus intakes in population study

Proline Betaine Quantification in fasting urine → Predicted Citrus Intake (g/day)
<table>
<thead>
<tr>
<th>NANS ID</th>
<th>Recorded Citrus Intake (g/day)</th>
<th>Predicted Citrus Intake (g/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>271</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>270</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>304</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>336</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>342</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>593</td>
<td>154</td>
<td>151</td>
</tr>
<tr>
<td>714</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>667</td>
<td>221</td>
<td>212</td>
</tr>
<tr>
<td>1953</td>
<td>72</td>
<td>81</td>
</tr>
<tr>
<td>2552</td>
<td>130</td>
<td>129</td>
</tr>
</tbody>
</table>
Agreement; reported & predicted intakes
Study Design

- Incorporation of biomarkers into study design
 - Checking and monitoring adherence

- Ex: Predimed: urinary hydroxytyrosol, the main phenolic compound in extra-virgin olive oil
- Plasma alpha-linolenic acid - as a measure of adherence to walnut consumption
Exploring the Links between Diet and Health in an Irish Cohort: A Lipidomic Approach

Aoife O’Gorman,† Helena Gibbons,‡ Miriam F. Ryan,† Eileen R. Gibney,† Michael J. Gibney,† Gary S. Frost,§ Helen M. Roche,†‡ and Lorraine Brennan∗,†‡,

†Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
‡Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
§Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
Mechanistic work

intervention

Metabolomics
Proteomics
Transcriptomics
Epigenetics

Metabolomics
Proteomics
Transcriptomics
Epigenetics
Mechanistic work

One-carbon metabolism and related pathways
Individual variability

- Estimated that only 40% of individuals respond to an intervention
- High variability within responses
- Need new approaches to capture this
Role of dairy proteins in glycaemic management

- Dairy proteins
- Individual response
- Predictive response
Randomised crossover study examining the effects of protein drinks on glycaemic control:

- Intact protein
- Casein hydrolysate A
- Casein hydrolysate B

- The protein drink was consumed twice daily for three days, directly before ingestion of study breakfast and evening meals

- 20 participants, aged 40-65y, BMI 25-35 kg/m², free of prescription medication
FreeStyle Libre Glucose Monitor

- Participants wore monitor for 14 days
- Glucose reading every 15 minutes

Drink 1

Drink 2

Drink 3
Response at breakfast

![Graph showing glucose response at breakfast](image)

- Intact sodium caseinate
- Casein hydrolysate A
- Casein hydrolysate B
Individual level analysis

Individual response to the same meals

Study design allowed N-of-1 analysis
Individual level analysis

- Only 3 individuals would benefit from drink A
- Only 3 individuals would benefit from drink B
- Need a predictive model to identify those that would benefit
<table>
<thead>
<tr>
<th></th>
<th>Responders</th>
<th>Non-responders</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.39 ± 0.34</td>
<td>5.31 ± 0.84</td>
<td>0.039</td>
</tr>
<tr>
<td>Serine (nmol/mL)</td>
<td>83.87 ± 10.08</td>
<td>112.12 ± 22.58</td>
<td>0.039</td>
</tr>
<tr>
<td>SM C16:0 (µM)</td>
<td>106.67 ± 7.77</td>
<td>124.93 ± 11.71</td>
<td>0.017</td>
</tr>
<tr>
<td>PC aa C30:1 (µM)</td>
<td>36.8 ± 2.76</td>
<td>42.42 ± 3.86</td>
<td>0.038</td>
</tr>
<tr>
<td>PC aa C30:2 (µM)</td>
<td>2.21 ± 0.10</td>
<td>3.18 ± 0.69</td>
<td>0.002</td>
</tr>
<tr>
<td>N-C12:0(OH) Cer (µM)</td>
<td>0.008 ± 0.003</td>
<td>0.005 ± 0.002</td>
<td>0.039</td>
</tr>
<tr>
<td>N-C28:0 Cer (µM)</td>
<td>0.029 ± 0.001</td>
<td>0.031 ± 0.001</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Individual Responses
Responses highly reproducible within an individual

<table>
<thead>
<tr>
<th></th>
<th>ICC</th>
<th>95% CI</th>
<th>RI(^1)</th>
<th>Intra-CV (%)(^2)</th>
<th>Inter-CV (%)(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact caseinate</td>
<td>0.892</td>
<td>0.782 - 0.954</td>
<td>0.997</td>
<td>5.66 ± 3.51</td>
<td>19.41 ± 0.49</td>
</tr>
<tr>
<td>Casein hydrolysate A</td>
<td>0.804</td>
<td>0.614 - 0.919</td>
<td>0.992</td>
<td>5.20 ± 4.41</td>
<td>14.82 ± 1.50</td>
</tr>
<tr>
<td>Casein hydrolysate B</td>
<td>0.764</td>
<td>0.548 - 0.901</td>
<td>0.990</td>
<td>7.65 ± 5.46</td>
<td>17.70 ± 3.82</td>
</tr>
</tbody>
</table>

1. RI: Reliability Index
2. CV: Coefficient of Variation
- Very reproducible responses within an individual
- High variability between individuals
- Need to consider individual responses- multiple measurements can facilitate analysis
Key TakeAways

- Incorporation of omics into study design can enhance studies
- Mechanistic information
- Compliance/adherence- biomarkers
- Precision Nutrition- capturing the individual response
Nutrition, Biomarkers and Health team
A McNamara, Dr A O Gorman, X Yin, Dr Harsha Pepadti, R Abudul Wahab, Dr C Collins, Dr C Rodriguez, Dr D Pena Gonzales, O Prendiville, M Heffernan, Dr R Hack Mendez, S D’Angelo, H Bottu, E Hillesheim,

Past members
All past members

Collaborators
Nutritech partners: G Frost, B van Ommen
NANS: A Flynn, M Gibney, A Nugent, B McNulty, J Walton
FoodBall Partners
Food4me Partners

http://www.ucd.ie/nutrimarkers